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Received 29 May 1992 

Abstract. We study by numeria! rimu!a!ionr !he gm:ng in!c&- due !o disolution 
in d = (1 i 1) dimensions. We consider a model based on simple. lemperature- 
dependent microscopic dissalution NI-, and we investigate the scaling properties of 
the growing surface S l N C l U r e .  The roughness exponenl a and Lhe dynamical scaling 
exponent B are determined far various temperatures. We repn on a complicated 
temperature dependence of the exponent fi which for three panicular temperalures 
approaches theoretical limiting values. Also studied is the average nearest-neighbour 
height difference which fallows a linear temperature dependence at saturation. 

1. Introduction 

The problem of surface or interface growth far from equilibrium has received 
considerable attention over the last few years [l-31. Many growth models have been 
introduced to study the morphology of growing surfaces, e.g. the Eden model, ballistic 
and random deposition, both as lattice and off-lattice models, with and without 
rearrangement of the particle positions [4,5]. The interest in these models is due 
to their role played in the understanding of crystal and thin-film growth processes 
and of interface dynamics in random media. Futhermore, these models are of interest 
because of the intimate relationship between surface growth and directed polymers 
[6,7] and the particle density evolution in reaction dynamics [8,9]. Also, the resulting 
surfaces exhibit fractal characteristics, most of them being self-@ne [lo]. 

The surface roughness is the property which has been predominantly investigated. 
Usually the roughness is defined as the width (or variance) E(t )  which for a one- 
A:.......":-..", ....L".-".- :" ..","..,"...,I ̂ " 
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where h( i,l) is the height of the surface at location i at time t;  L is the size of the 
one-dimensionai substraie. h i i j  denotes the mean iieigiii ai time i f i x  a pariicuiar 
surface configuration and the average in (1) is taken over all possible configurations. 
Note that this definition of roughness ignores overhangs. 

Starting from a flat surface, the time evolution of the width is as follows. The 
width first grows as a power law with the dynamical exponent 0. At longer times, the 
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width shows a crossover and saturates at long times, reaching a value which depends 
on the substrate as [ - L" where a denotes the roughness exponent. The behaviours, 
characteristic for the two temporal regimes, can be recast in a single scaling form [ll] 

where z is given by z = a / p .  f (z )  denotes the scaling function 

z < l  

constant z B 1 

The analytic treatment of growth and deposition processes was initiated by 
for iiie 

description of surface growth. From their work the values for the two characteristic 
exponents in d = (1 + 1) dimensions are a = f ,  p = i. Later this equation was 
extended by Kardar el a1 who proposed the following nonlinear equation for surface 
growth (wz equation) [13]: 

m.waids ai,; .&,i;kiilsoil i;zj WiiO deii.ved a ;iilear biigev.iii eqnatioii 

Here h ( z , t )  measures the height of the surface relative to the average height. 
The diffusion term on the right-hand side of (3) describes the relaxation due to the 
surface tension U. The nonlinear term was introduced to account for the lateral 

correlated in space and time (white noise). For the KPZ equation it has been found 
that the dynamical and roughness exponents are related to each other by the following 
scaling relationship [13,14]: 

g:&!;h. q(z,<) defiozs a f.oai;atbfi :e:= w%,<h us.;a!!4' assi;mei ;c be &!;a- 

a+ a/@ = 2 .  (4) 

For a onedimensional substrate the exponents are a = f and p = f .  Based on 
the KPZ equation two limiting cases can be discussed: if the nonlinear term is omitted, 
A = 0, (3) reduces to the linear Langevin equation treated by Edwards and Wilkinson 
and thus Q = f and p = a. If the diffusion term is also dropped, X = U = 0, and 
the random deposition model emerges. In this case there is no relaxation and thus 

which is trivially p = f .  
In this letter we present the dissolution model which was introduced in a different 

context by Wehrli [15] to describe the interdependence of the surface morphology 
and the dissolution kinetics of minerals. In this model particles are removed from the 
surface according to dissolution probabilities. Re-ahsorption is ignored, corresponding 
to the situation of low chemical potential. The dissolution probabilities are assumed 
to depend on the local surface structure and to he activated, i.e. they depend on the 
temperature. In turn the temperature is a parameter which allows one to tune the 
characteristics of the dissolution process and to study the roughness depending on 
parametrized microscopic dissolution rules. 

rhnrn -IC- n- r - r s s r - + i n n .  +hnmf-*o n n b r  tho A t r n o m i r n l  nvnnncnt i~ nf i m n n r r i n r ~  
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2. The model and simulation results 

The dissolution model is based on rates at which particles dissolve from the surface. 
These rates are assumed to depend on the local structure as follows: 

I C ,  = nexp(-nw) (5) 

where n denotes the number of nearest neighbours for a particular lattice site. For 
the one-dimensional substrate, n may take one of the following possible values: 
n = 1,2,3. The model is assumed to  follow the solid-on-solid condition, i.e. 
overhangs are ignored. K is a dissolution rate and w is the dimensionless activation 
enthalpy for which we make the identification w = 1/T, where T is the reduced 
(dimensionless) temperature. 

The simulation &lculation starts from a flat surface for given lattice size L and 
temperature T. A site j is chosen at random and the number n of nearest neighbours 
of this site is determined. Then the height h j  is decremented according to the 
probability 

p , ( h j - h j - l ) - e x p ( - n / T ) .  (6) 

In all cases periodic boundary conditions are imposed on the heights. The process is 
repeated and the surface is analysed in time intervals which are measured in terms 
of dissolved layers or, more precisely, time is set to 1 = a, where denotes the 
number of dissolved layers. This definition is chosen for convenience to present the 
results on equal scales independent of the parameters K ,  L ,  T. The number of trial 
events (proportional to  CPU-time) and are linearly related except for very short 
times in the beginning of the simulation for which a transient nonlinear relationship 
is observed. 

We report on results obtained for temperatures which were varied in the range 
0.4 4 T < 100. We begin with the short-time behaviour for which our system 
was as large as L = ZL4; this size was necessary to avoid finite-size effects and to 
obtain reliable exponents a t  low temperatures, T < 1. For higher temperatures, 
T > 1, smaller lattice sizes led to satisfactory results. In most cases we followed 
the evolution up to times t = 4000, measured in numbers of dissolved layers, and 
averages were taken typically over 50 independent realizations. 

In figure 1 we present the surface width F(t,T) obtained from the simulation 
calculations for various temperatures. The widths given by full lines are plotted 

indicated by broken lines. For the low- and the high-temperature limits the theoretical 
slopes of $ and $, respectively, are given as chain lines. The figure demonstrates 
that the widths converge rather slowly to the expected scaling behaviour. For low 
temperatures, T < 1.0, we observe a convex behaviour while for high temperatures, 
T > 1.5, the curves show a concave characteristic which is explained as follows. 
For high temperatures, on the one hand, the three p ,  values are almost identical. 
Therefore, at short times the situation resembles that observed in random deposition 
for which p = t holds. At later times the differences between the p,s  become crucial 
so that the relaxation of the surface slows down the growth of the surface width. For 
low temperatures, on the other hand, due to the big differences between the three 

nn h n - l n n  rmlnc  Thn c1nnc.c n h m : n n A  fin- II f i e  in thn r g n m n  1 M n  / I / A f l M  n-n 
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Pigum 1. The surface widlh E (  1 ,  T) as a function 
of time for various temperatures T as indicated 
at the right margin. For T = m the random 
deposition (dissolution) results are depicted. The 
sample length was L = Zi4 and averages were 
taken over SO tuns. The broken lines denote 
the fitted s l a p .  For comparison, the power. 
law behaviours with exponents @ = f and 3 '  
respectively, are also shown. Note that the different 
lines are shifted lo avoid overlap. 

Figure 2. The dynamical scaling exponenl P(T) 
as a funclion of the inverse lemperature and the 
sample length L. For L = 16384, data are taken 
from figure 1. The full cuwe serves as a guide 
lo the eye. The broken lines indicate Ihe limiting 
I O W - I W ~ % I U ~ ~  behaviour of f and the Edwards- 
Wilkinson value of f .  

p,s  the growth accelerates with increasing time since the structured surface facilitates 
the dissolution process. 

ma .."l..,%" ,.f tL- A.,""...:" o.,",."a"* " f  T\ nhtn:"nA frnm +ha fit+;"" n..a nrDra"t0,i 
111* "PIYL7.3 " L  L L l r  "JL,a"," C*tJ"1L*"L p ( x  , ""La..,.." ,I"... , , E r  .lLLl.1& Y... y'..-....L.." 

in table 1 and are also plotted in figure 2 as a function of the inverse temperature 
1/T for different system sizes. With decreasing temperature the exponent beginning 
at a value of p = 0.42 for T = 100 decreases and reaches a minimum at T, E 3.5 
where p takes a value of p Y 4. Then the exponent increases and saturates for small 
temperatures at a value of p E f .  This behaviour is a characteristic of our simulation 
results and is independent of the system size L which was varied in the range of 
2048 4 L 4 16384. 

From these findings one is tempted to  conjecture that asymptotically, for L - co, 
the dynamical exponent takes three values: p = f for T = m, p = 4 for 
00 > T > Tc, and p = 3 for T, > T ,  i.e. as a function of temperature, 0 shows 
sharp transitions at T = cc and T = T'. The smooth variation of p between the 
three limiting valuer ~lhserved in the rimu!ation results would then be a consequence 
of the finite system size imposed by computer limitations. 

In the light of this conjecture we analysed [ ( t ,  T )  paying particular attention to its 
asymptotic behaviour. In fact, for high temperatures, T > Tc: (( t ,  T) shows very slow 
convergence to its asymptotic power-law behaviour. This finding is clearly in favour of 
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a b l e  1. Ihe dynamical exponent P(T) obtained from a 61 lo the widlh E(t ,  T )  and 
OL + a/@ with OL = 0.5; see t a t  tor details. 

T P -k ./P 
0.4 0.32 2.05 
0.5 0.34 1.96 
0.7 0.30 2.18 
1.0 0.30 2.19 

1.5 0.27 2.37 
2.0 0.26 2.40 
2.5 0.26 2.44 

3.5 0.26 2.46 
5.0 0.26 2.42 

10.0 0.27 2.33 
100.0 0.42 1.69 

the conjecture that p = 4 in this temperature regime. We also performed simulation 
calculations up to very long times. For T = 20, L = 4096 and t,,, = 100ooO the 
fitted exponent was p LL i ,  without any indication that the behaviour was influenced 
by the crossover to saturation. 

For low temperatures, T < T,, the simulation results are more conclusive. As 
a function of time E(1,T) quickly reaches the asymptotic power-law behaviour and 
our results indicate a smooth variation of the exponent for T < T,. Nevertheless, 
we cannot rule out the possibility that E ( t ,  T) converges extremely slowly and that p 
has a sharp transition at T'. 

We point out that transitions between discrete values of p were also observed for 
other growth models. Krug [16] investigated the PNG model and observed that 13 = f 
except in a particular symmetric case for which p = $. Furthermore, Family [17] 
found that the introduction of relaxation in the random deposition model causes the 
exponent p to drop sharply from 

1.- W L l , " , Y C  "y r=yv  ,1111 g U,, L U G  ,""gL,rrG>J GnpurrGrlr a WU1C11 w 5  ""Ld,, ,~" 

using the L-dependent saturation values of the surface width. We also considered 
the small j-behaviour of the height-difference correlation function C(j, 1) = 
( [ h ( j , t )  - h(0 , t ) l2)  which scales as j2" for small j. We found that within 
the numerical accuracy the roughness exponent was a r $ irrespective of the 
temperature. The first method proved to  be more involved because of significant 
fluctuations in the saturation widths and the long times required to reach saturation, 
while the results based on the height-difference correlation function turned out to be 
more reliable. 

With regard to the scaling relationship (4) we also present the sum a + a/@ 
in table 1. The sum takes values of approximately 2 at low temperatures, increases 
smoothly, and almost reaches values of 2.5 for T 2 T,. For T = 100 the value 
of 1.69 indicates that the conditions are close to those of the random-deposition 
model for which the roughness exponent is meaningless. Nevertheless, the tendency 
is obvious and is analogous to the results obtained for P. For low temperatures, 
T < Tc, the KPZ equation applies, so that a+ a/@ = 2, while for high temperatures, 
T > Tc, the Edwards-Wilkinson picture is appropriate with a = $ and p = a so that 

to 4. 
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a + a/@ = 2.5. The smooth transition between the two discrete values corresponds 
to that obtained for p in the same temperature range. 

Making use of these exponents and of the scaling relationship, equation (2), we 
are able to collect the width results in a master plot. This is demonstrated in fi ure 3 

various lattice sizes and for the tempelature T = 0.4. We observe a pronounced data 
collapse onto a single scaling curve which follows the expected power-law increase 
for short times with a crossover to saturation close to t / L " l p  = 0.05. This scaling 
behaviour was obtained independently of the chosen temperature. 

where the rescaled widths ( / L m  are plotted versus the rescaled time t / L "  B p for 

0 .5  

(/L 

0.1 

0.05 

. L = 3 2  
* L = 6 4  
6 L = 126 
D L = 256 
a L = 512 
0 L = 1024 

0 
0 2 4 6 8 1 0 1 2  

T 

FIpm 3. Saturation effect in the dissolution model. 
Plotted are the rescaled widths versus the rescaled 
time for various system sizes as indicated. The 
temperature considered is T = 0.4. 

Flgvre 4. The mean-nearest-neighbour differences 
(IVh,(T)I) as a function of the temperature. The 
standard deviations are indicated by vertical error 
ban. The sample length was L = 256 and averages 
were taken Over 50 runs. 

We analysed other quantities relevant to the description of the surfaces such as the 
average nearest-neighbour differences (IVhl) and the step densities Here we present 
results on (IVhl). This quantity is found to saturate at a value (IVh,(T)I) which 
depends only on the temperature T, irrespective of the sample length L. Remarkably, 
the saturation value obeys a simple linear relationship: (IVh,(T)I) = T which is 
evident from figure 4. Wehrli [U] reported the same finding for his simulations in 
d = (2 + 1) dimensions. 

In this letter we concentrated on the analysis of the scaling properties of the 
surface growth for the dissolution model. Our results follow the scaling relationship 
presented in equation (2). The dynamical exponent p shows an interesting 
temperature dependence approaching the three limiting cases mentioned in the 
introduction: for infinite temperature the local structure has no importance for the 
dissolution probability and the system follows the random deposition (dissolution) 
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process with the exponent being p(T -+ CO) r~ I .  For intermediate temperatures 
the probabilities p ,  are such that the relaxation is strong compared with the lateral 
growth. Thus in this temperature regime the model is close to  the Edwards-Wilkinson 
assumption and correspondingly p r~ 4. We point out that this value is outstanding 
for a growth model without restructuring: such low values are usually reached only for 
models for which restructuring is allowed [17-191. Finally, for very low temperatures, 
the microscopic growth probabilities are such that lateral growth is as important as 
relaxation. Thus the KPZ equation applies and 0 f. Similarly the sum rule (4) 
holds when p z f ,  but with increasing temperature there is a transition and the 
sum a -t a/p reaches the value of 2.5 which is correct for the Edwards-Wilkinson 
assumption. 

In conclusion, depending on temperature, we obsene a transition between 
different kinetic phases. This is reminiscent of some recently reported results 

necessary to attain a profound understanding of the scaling properties characteristic 
for the dissolution model in d = ( 1  + 1) and higher dimensions. 

We thank Professors K Dressler, J Klafter, and B Wehrli for helpful discussions and 
F Weber for technical assistance. A grant for computer time of the Rechenzentrum 
ETH is acknowledged. 
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